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How does a liquid freeze if the geometry of its particles conflicts with the symmetry of the crystal it should
naturally form? We study this question in the simplest model system of particles exhibiting such a symmetry
mismatch: hard pentagons in two dimensions. Using isobaric and isotensic Monte Carlo simulations we have
studied the phase behavior of hard pentagons. On increasing the pressure from the homogeneous and isotropic
low-density phase, the system first exhibits a rotator phasesplastic solidd with a triangular lattice structure. At
higher densities it undergoes a weak first-order phase transition into a “striped” phase composed of alternating
rows of oppositely pointing particles. This phase is analogous to the “striped” phase in the compressible
antiferromagnetic Ising model on a triangular lattice and is an example of systems in which frustration due to
the mismatch in symmetries is released by an elastic coupling to the lattice. In order to pursue this analogy we
also consider hard heptagons, showing that in this case the decrease in symmetry mismatch indeed leads to a
shift in the transition densities to higher values and a weakening of the transition.
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I. BACKGROUND

Shape is one of the main characteristics of molecules.
Indeed, simple models in which molecules are represented
by hard objects of a given shape without any interaction
apart from their excluded volume have been very successful
in the analysis of the phase behavior of liquids, liquid crys-
tals f1,2g, and the solid phases that develop from them. In
most cases heuristic packing arguments can be used as a safe
guide to predict possiblesliquid-dcrystalline structures in
these systems.

What happens, however, if the particle geometry does not
naturally “fit” into one of the crystal structures into which
the liquid tends to freeze? The simplest objects which seem
to fulfill this requirement are two-dimensionals2Dd particles
with fivefold symmetry. At low densities they act effectively
like hard disks, which would form hexagonal structures.
However, at high densities one expects the fivefold symme-
try to strongly interfere with hexagonal ordering. In such a
system the ultimate stable crystalline phase is thus the result
of a subtle tug-of-war between the spatial and orientational
degrees of freedom. A system of this type was first consid-
ered by Brańka and Wojciechowski who studied a system of
hard pentamerssobjects made from five circular disks ar-
ranged with their centers on the vertices of a pentagond in
both mechanical simulationsf3g and computer simulations
f4–6g. They indeed found that on compression their system
undergoes two successive transitions: first to an orientation-
ally disordered plastic solid phase with hexagonal symmetry
and finally to a dense phase with rectangular unit cell in
which the pentamers are orientationally ordered with respect
to the lattice vectors. Due to computational limitations, these

authors studied relatively small systems composed ofN
=120 particles. Wojciechowski and co-workers later consid-
ered larger systems of up toN=896 but then focussed on the
elastic properties of the solid phases exclusivelyf7g.

Here we reexamine these questions using what is arguably
the simplest shape in the class of “misfit” particles—i.e.,
hard pentagons. Our main motivation is the fact that phase
transitions in 2D are notoriously sensitive to system size.
Current computational capabilities allow us to study a sig-
nificantly larger system size—specifically,N=4763 or 30
times that of Refs.f4,5g—using the isotensic ensemble, thus
ruling out that the phases observed are artifacts of a specific
simulation box geometry. Moreover, we have determined
both orientational and positional order parameters and their
coupling in the dense phases, thus allowing a much more
detailed analysis of the transitions concerned. Finally, we
interpret the observed high-density phase in the context of
earlier work on “soft” frustrated systems, in which elastic
deformation of an underlying crystal lattice serves to relax
not fully satisfiable energetic or entropic constraints. The
paradigmatic example is the Ising antiferromagnet on a de-
formable triangular latticef8g whose low-temperature phase
is readily mappable onto the high-density phase of hard pen-
tagons. In the lattice systems one can independently vary the
direct interaction between the spins and coupling to the lat-
tice through an elastic modulus, allowing predictions of the
nature of the phase transition. In hard-particle systems a
change in particle shape will lead to intertwined changes in
both the orientational and positional couplings. In order to
assess this effect we also briefly study hard heptagons.

The outline of the paper is as follows. In Sec. II A we first
define the order parameters by which we have identified the
structures obtained in the simulations. In Sec. II B the mea-
sured data are presented and in Sec. II C we compare the
freezing behavior to the transition in the compressible anti-
ferromagnetic Ising model on a triangular lattice. In Sec. II D
we explore this connection further by briefly considering the
behavior of hard heptagons. Section III sums up our conclu-
sions.

*Current address: Institut für Physik, Johannes Gutenberg-
Universität D-55099 Mainz, Germany.

†Current address: Physical Biosciences Division, Lawrence Ber-
keley National Laboratory, Berkeley, CA 94720, USA.

PHYSICAL REVIEW E 71, 036138s2005d

1539-3755/2005/71s3d/036138s6d/$23.00 ©2005 The American Physical Society036138-1



II. RESULTS

We have performed both isobaric and isotensic Monte
Carlo sMCd simulations of hard pentagons. In an isotensic
simulation the pressure tensor is imposed instead of the pres-
sure. The system is allowed to relax to the pressure tensor by
sampling the box shape. Because the box shape is not nec-
essarily rectangular, the system may form crystalline phases
which would not have been commensurate with a rectangular
box f9–11g. The simulations were performed with 4736 pen-
tagons. Equilibration took 1.53106 MC steps per particle
ssweepsd and production runs were of 1.03106 sweeps. Re-
sults are given in length units ofs sdiameter of pentagon
perimeterd and energy units ofkBT.

A. Definition of the order parameters

We have measured several quantities which reflect the
positional or orientational ordering of the system. Some of
these are the usual order parameters for studying 2D melting
f12g.

We define the local values of the order parameters at lo-
cation x j, which is the location of pentagonj . The global
orderA for the local order parameterasx jd is then defined as

A =
1

N
Uo

j=1

N

asx jdU s1d

swe use absolute values because most order parameters have
imaginary componentsd.

First, the particle orientational order parameterfnsxid is
defined as

fnsx jd = einu j , s2d

where u j is the angle between an arbitrary axis from the
center to one of the vertices of pentagonj and an arbitrary
fixed axis. As a convenient measure of absolute orientation,
which removes the fivefold degeneracy inherent in this defi-

nition of the orientation, we can useū j =u j mods2p /5d.
For bond-orientational order we use

cnsx jd =
1

Nj
o
k=1

Nj

eniu jk, s3d

whereNj is the number of neighbors of particlej , the sum is
over the neighborsk of j , and u jk is the angle between an
arbitrary fixed axis and the line connecting particlesj andk.
Two particles are neighbors if they share an edge in the
Voronoi tesselation of the set of points that are the centers of
the pentagons.

In a crystal, thescomplexd sum

Cne
iv =

1

N
o
j=1

N

cnsx jd s4d

for the appropriate value ofn determines an overall orienta-
tion v of the crystal. This orientation can then be used with
the lattice spacing—inferred from the density—to construct a
reciprocal lattice vectorG of the appropriate crystal which
then allows the calculation of the positional order:

Ssq = Gd =
1

N
o
k=1

N

eiG·xk. s5d

To get an indication of the coupling between the neighbor
position and particle orientation, the following bond-particle
orientational parameter was used:

CmFn
* ;

1
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*sx jdU

=
1
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N H 1

Nj
o
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Nj

eimu jkJe−nu jU , s6d

where, again, the inner sum is over the neighborsk of j .

B. Phase behavior

In Fig. 1 the pressureP is plotted versus the packing
fractionh. For 2D particlesh is defined as the fraction of the
total area covered and provides a convenient particle-shape-
independent dimensionless measure of the density. There are
two discontinuities in packing fraction which could indicate
first-order phase transitions. The high-density phase transi-
tion shows a clear density gap, while the nature of the low-
density transition is not as clear. There the situation is similar
to 2D hard-disk melting, where, due to the finite-size effects
on the simulation, it is difficult to decide between a first-
order phase transition and a Kosterlitz-Thouless-Hulperin-
Nelson-YoungsKTHNY d dislocation-unbinding melting sce-
nario involving a hexatic phasessee, for example,f12gd. The
similarity between the present case and the hard-disk fluid-
solid phase transition can be seen in the inset of Fig. 1,
where the scaled hard-disk equation of statesdotted lined is
superimposed on the pentagon equation of statessolid lined.

The density dependence of the order parameters at the
low-density transition is shown in Fig. 2. The sixfold bond
orderC6 and the structure factor of the corresponding lattice
Ssqhexd, whereqhex is the reciprocal lattice vector of the tri-

FIG. 1. PressureP versus packing fractionh for hard pentagons:
The equation of state shows two discontinuities: one at a low den-
sity ssee the insetd and one at a higher density. The dotted line is a
2D hard-disk equation of state with both pressure and density scaled
by a constant factor so as to optimally match the pentagon results.
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angular lattice, increase. The particle positions are frozen
onto a triangular lattice. The orientational parametersFn,
however, remain close to zero; there is no orientational or-
dering at this transition. Also the cross coupling between the
sixfold-symmetric crystal field and the fivefold-orientational
symmetry of the particles, as measured by the order param-
eterF30, remains negligiblessee Fig. 3d. Of course, there are
definite position-orientation correlations in this rotator phase,
which have been studied in detail in Ref.f5g for the pentam-
ers, but these do not build up to any appreciable net orienta-
tional order.

At the high-density transitionssee Fig. 3d the bond order
C6 increases further, but the corresponding structure factor
Ssqhexd drops to zero. The system still has sixfold bond order,
but the particles are no longer positioned in a regular trian-
gular lattice. At the same transition orientational ordering
sets in. In particular,F10 grows strongly. However,F5 re-
mains effectively equal to zero. The reason why we observe
only 10-fold sin general, 10n-foldd ordering is that the par-
ticles align in “antiparallel” fashion, cancelingF5 exactly.
Keeping trend with the increased crystallinity, as signaled by
the increasing solid structure factorSsqcpd, the order param-
eterF30 now also develops finite values.

Together with the absolute orientational order, the cou-
pling between orientational and bond-orientational order, in
this caseF10

* C6 goes from zero to a finite value at the tran-
sition. The structure that forms is a striped phase of antipar-
allelly packed pentagons, as the snapshot in Fig. 4 shows.

To our knowledge, there exists no proof that the regular
arrangement of Fig. 4sshown schematically in Fig. 5d is the
densest possible pentagon packing on a plane, but it has been
conjectured by Henleyf13g. Our simulations and the experi-
ments by Duparcmeuret al. f14g spontaneously form this
arrangement at the highest pressures. The arrangement itself,
as shown in Fig. 5, is crystallographically speaking a rectan-
gular phase with a unit cell of size

ax
cp = s

5 +Î5

8
< 0.905ax

hex,

ay
cp = sÎ 9

32
s5 +Î5d < 0.824ax

hex, s7d

where ax
hex and ay

hex are the equivalent hexagonal unit-cell
dimensions. The two particles are located at

r 0 = s0,0d,

r 1 = SsF 1

16
+

3

16
Î5G,

ay
cp

2
D , s8d

with a maximum packing fraction of 0.921 31. For reasons
that will become clear in the following we prefer, however,
to look upon this phase as a distorted hexagonal packing.

Figure 3 also shows the density dependence of the appro-
priate structure factorSsqcpd for this type of distorted hex-
agonal lattice. The figure clearly shows that this order param-
eter starts to grow at the phase transition. In addition we also
followed the behavior of the “aspect-ratio order parameter,”
defined as

a = 1 −Say

ax
−

ay
cp

ax
cpDYSay

hex

ax
hex −

ay
cp

ax
cpD , s9d

where ax and ay are the measured lengths of the unit-cell
edges corresponding toax

cp anday
cp in Fig. 5. This order pa-

rameter goes from 0 to 1 as the lattice distorts from hexago-
nal to close-packed structure, as can be seen in Fig. 3.

Upon compression from the rotator phase, the system
forms a close-packed crystal with a large concentration of
defects in the form of kinks in the stripes of the parallelly
aligned pentagons, similar to what the pentagon packings of
Duparcmeuret al. f14g showed. In addition, hysteresis pre-
vents crystallization until pressures are well beyond those at
which the crystal meltssin contrast to Ref.f4g, where the
system crystallized easily because of finite-size effectsd.

The size of the density gap, the hysteresis, and the jumps
in the order parameter valuessespecially the one inad
strongly suggest a first-order phase transition between the
rotator phase and the close-packed crystalline phase. Given
the large number of particles involved it is unlikely that it is
a finite-size effect.

FIG. 2. Order parameters at the low-density phase transition for
hard pentagons: The sixfold bond orderC6 and the structure factor
of the corresponding triangular latticeSsqhexd increase.

FIG. 3. Order parameters at theshigher-densityd rotator-crystal
phase transition for hard pentagons. For definitions see the text.
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C. Comparison to the elastic antiferromagnet
on a triangular lattice

Ising antiferromagnetssIsing models with a positive spin-
spin coupling constantJd are often used as models of the
order-disorder transition in alloys. “Ordering” an alloy
means that unlike particles prefer to be neighbors just like
antiparallel spins in an antiferromagnet. But many metallic
solid solutions form a fcc lattice, and antiferromagnetism
does not “fit” the fcc lattice in the sense that the lattice can-
not be filled up with alternating rows of up and down spins
in all directions. This mismatch leads to “frustration”—i.e., a
disordered lowest-energy state.

The two-dimensional analog of this type of system, the
antiferromagnet on a triangular lattice, has been studied ex-
tensivelyf8,15g. In this model, spins are free to move around
their lattice position and the neighboring spin-spin interac-
tion parameterJsi , jd is a function of the distance between
the spinsi and j . In addition, there is a linear elastic term in
the Hamiltonian with the strain depending on the spin posi-
tions, introducing the additional requirement of a slowly
varying displacement field. It has been shown that coupling

to the strain of the latticesby introducing compressibilityd
removes the frustration and allows for a transition to an or-
dered ground statef8g. This new phase, the “stripe” phase,
has two broken symmetries: the Ising symmetry and the
three-state symmetry of the underlying lattice.

The transition to this stripe phase has been found to be
strongly first order under the assumption of a mean strain
field f8g. When fluctuations in the spin positions are taken
into account, the transition is still strongly first order for low
values of the spin-displacement coupling constant relative to
the elastic constants, but becomes weakly first order for
higher values of the spin-displacement coupling constant
f16g.

The high-density phase transition in the pentagon system
resembles this transition. Frustration due to the mismatch in
particle and lattice geometry is removed by straining the lat-
tice into the nonhexagonal, striped phase shown in Figs. 4
and 5. Here, the symmetries that are broken are the left-right
symmetrysthe direction where a pentagon corner is pointing
in a bond directiond and a threefold symmetry involving the
choice of direction of the stripes. The size of the density gap
and the behavior of the order parametersa andF10

* C6 sug-
gest a moderately weak first-order transition similar to what

FIG. 4. Representative snapshots of the three phases. Fluid phasesleftd, rotator crystalsmiddled, and high-density crystalsrightd. The
pentagons are shaded according to their absolute orientation.

FIG. 5. Close packing: pentagons pack onto a distorted triangu-
lar lattice. The unit cell is shown as the rectangular area with darker
shades; its dimensions and particle positions are given by Eqs.s7d
and s8d, respectively.

FIG. 6. PressureP versus packing fractionh for heptagons: The
equation of state shows a discontinuity at a larger packing fraction
than for the pentagon case.
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is seen by Guet al. f16g for the intermediate regime of the
spin-displacement coupling constant strength.

D. Changing the couplings: Heptagons

Gu et al. have predicted that the transition to the striped
phase becomes sharper with increasing effective coupling
m=e2/E, wheree is the coupling between the spins and dis-
placements andE is the elastic constant of the triangular
lattice. In hard-particle systems one is not able to indepen-
dently vary the direct orientational coupling between the par-
ticles and coupling to the lattice. The only parameter we can
vary is the shape of the particles. In order to assess the effect
of such a change on the phase behavior we have therefore
also simulated hard heptagons.

Figure 6 shows the equation of state of hard heptagons.
The high-density transition has shifted to a higher packing
fraction sfrom h=0.84 for pentagons toh=0.87d. A snap-
shot, Fig. 7, of the high-density phase reveals that is again a
striped phase, with a lattice structure similar to that of the
pentagons.

The equation of statessee inset of Fig. 6d and the order
parametersssee Fig. 8d, however, both clearly show that the
transition has become weaker. Comparing to the parameterm
we see that this is naively consistent with the fact thatsid the
effective orientational coupling between the heptagons is less
than that of the less circular pentagons andsii d the Young
modulus of the lattice is larger due to the higher packing
fraction achieved. However, a more detailed theory that
maps the two models onto each other would be necessary to
resolve the nontrivial density dependence of these effective
interaction parameters.

III. CONCLUSIONS

We have investigated the phase behavior of hard penta-
gons and heptagons within Monte Carlo simulations. Penta-

gons are a simple model of particles, whose geometry inter-
feres with the symmetries allowed for crystals.

At low pressures pentagons exhibit a positionally and ori-
entationally disordered isotropic phase. On increase of pres-
sure they undergo a first-order phase transition to a position-
ally ordered, but orientationally disordered rotator phase.
This transition proceeds like the freezing transition in hard
disks. We do not find traces of fivefold symmetry in the
orientational order parameters, contrary to the observations
of Ref. f4g for cyclic pentamers, where it is reported that the
molecular rotation is hindered in the hexagonal phase.

On further increase of pressure the nonspherical shape of
the particles begins to influence the phase behavior. They
undergo a first-order phase transition, in which the orienta-
tional degrees of freedom are to a large extent “frozen in”
and the lattice becomes distorted. Both effects thus have their
onset at the same transition.

As pentagons cannot be packed densely onto a regular
triangular lattice, but can onto a distorted one, the positional
order changes at this phase transition. The resulting distor-
tion of the lattice alleviates frustration of the orientational
and positional order. This effect is well known in the context
of the antiferromagnetic Ising model. The transition to the
high-density phase in hard pentagons resembles the transi-
tion to the striped phase in the antiferromagnetic case.

A short study of hard heptagons reveals that the mismatch
between particle shape and crystal structure symmetry is, as
one expects, less severe than in the pentagon case, resulting
in a shift of the transition to the striped phase to higher
densities and a weakening of its first-order character.
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FIG. 7. Snapshot of the high-density phase of hard heptagons
sP=180d. The particles are color coded according their absolute
orientations.

FIG. 8. Order parameters at the high-density transition in
heptagons.
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