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Monte Carlo study of hard pentagons
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How does a liquid freeze if the geometry of its particles conflicts with the symmetry of the crystal it should
naturally form? We study this question in the simplest model system of particles exhibiting such a symmetry
mismatch: hard pentagons in two dimensions. Using isobaric and isotensic Monte Carlo simulations we have
studied the phase behavior of hard pentagons. On increasing the pressure from the homogeneous and isotropic
low-density phase, the system first exhibits a rotator pllsstic solid with a triangular lattice structure. At
higher densities it undergoes a weak first-order phase transition into a “striped” phase composed of alternating
rows of oppositely pointing particles. This phase is analogous to the “striped” phase in the compressible
antiferromagnetic Ising model on a triangular lattice and is an example of systems in which frustration due to
the mismatch in symmetries is released by an elastic coupling to the lattice. In order to pursue this analogy we
also consider hard heptagons, showing that in this case the decrease in symmetry mismatch indeed leads to a
shift in the transition densities to higher values and a weakening of the transition.
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I. BACKGROUND authors studied relatively small systems composedNof
i ] o =120 particles. Wojciechowski and co-workers later consid-
Shape is one of the main characteristics of moleculesgred larger systems of up =896 but then focussed on the
Indeed, simple models in which molecules are representeglastic properties of the solid phases exclusiyély
by hard objects of a given shape without any interaction Here we reexamine these questions using what is arguably
apart from their excluded volume have been very successfuhe simplest shape in the class of “misfit” particles—i.e.,
in the analysis of the phase behavior of liquids, liquid crys-hard pentagons. Our main motivation is the fact that phase
tals [1,2], and the solid phases that develop from them. Intransitions in 2D are notoriously sensitive to system size.
most cases heuristic packing arguments can be used as a s@ferrent computational capabilities allow us to study a sig-
guide to predict possibléliquid-)crystalline structures in nificantly larger system size—specificallj=4763 or 30
these systems. times that of Refs[4,5]—using the isotensic ensemble, thus
What happens, however, if the particle geometry does ndtl_JIing out that the phases observed are artifacts of a sp_ecific
naturally “fit” into one of the crystal structures into which Simulation box geometry. Moreover, we have determined
the liquid tends to freeze? The simplest objects which seerOth orientational and positional order parameters and their
to fulfill this requirement are two-dimension@D) particles ~ COUPling in the dense phases, thus allowing a much more
with fivefold symmetry. At low densities they act effectively detailed analysis of the transitions concerned. Finally, we

like hard disks, which would form hexagonal structures.Nt€rPret the observed high-density phase in the context of

However, at high densities one expects the fivefold Symme(::‘arlier work on “soft” frustrated systems, in which elastic

> ) . deformation of an underlying crystal lattice serves to relax

tsrysign?t:ﬁggulﬁim;tigirtilbvl\gﬂ;rhsé all?::alhgrsdeei!n%.uIsntﬁgci";sanm fully satisfiable energetic or entropic constraints. The

3f/ bile ¢ bet y h P tial and orientai taradigmatic example is the Ising antiferromagnet on a de-
of a subtie tug-ol-war between the spatial and orientationgt, .y apje triangular lattic8] whose low-temperature phase

degrees of freedom. A system of this type was first considis readil : .
= . ) y mappable onto the high-density phase of hard pen-
ered by Braka and Wojciechowski who studied a system of tagons. In the lattice systems one can independently vary the

hard [:éent'ak:nir@bjects made r:rom f|ye cwcf:ular d'Sk? ar direct interaction between the spins and coupling to the lat-
ranged with their centers on the vertices of a _pentagnn tice through an elastic modulus, allowing predictions of the
both mechanical simulatioris] and computer simulations | o4 re of the phase transition. In hard-particle systems a

[4-6]. They indeed found that on compression their systemy, e in particle shape will lead to intertwined changes in

undergoes two successive transitions: first to an orientatiorBoth the orientational and positional couplings. In order to

ally disordered plastic solid phas‘? with hexagonal S.ymme'[.r%\ssess this effect we also briefly study hard heptagons.
and finally to a dense phase with rectangular unit cell in =g o tine of the paper is as follows. In Sec. Il A we first

which the pentamers are orientationally ordered with respeGlefine the order parameters by which we have identified the
to the lattice vectors. Due to computational limitations, theseStructures obtained in the simulations. In Sec. Il B the mea-

sured data are presented and in Sec. Il C we compare the
freezing behavior to the transition in the compressible anti-
*Current address: Institut fir Physik, Johannes Gutenbergferromagnetic Ising model on a triangular lattice. In Sec. Il D

Universitat D-55099 Mainz, Germany. we explore this connection further by briefly considering the
TCurrent address: Physical Biosciences Division, Lawrence Berbehavior of hard heptagons. Section Il sums up our conclu-
keley National Laboratory, Berkeley, CA 94720, USA. sions.
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Il. RESULTS 100 T . . 20, . ;
. . -
We have performed both isobaric and isotensic Monte .
Carlo (MC) simulations of hard pentagons. In an isotensic 75k | i | i
simulation the pressure tensor is imposed instead of the pres- M 410
sure. The system is allowed to relax to the pressure tensor by
sampling the box shape. Because the box shape is not nec- o sol- | 1 i
essarily rectangular, the system may form crystalline phases 08 . 05 0
which would not have been commensurate with a rectangular I
box[9-11]. The simulations were performed with 4736 pen- 25k i
tagons. Equilibration took 1810° MC steps per particle
(sweep$ and production runs were of 2:010° sweeps. Re- [ttt
sults are given in length units af (diameter of pentagon 9 . L . L . !
perimetey and energy units okgT. 6 07 n 09
A. Definition of the order parameters FIG. 1. Pressur® versus packing fractior for hard pentagons:

We h d | titi hich reflect thThe equation of state shows two discontinuities: one at a low den-
€ have measured several quantiies which refiec ity (see the insg¢tand one at a higher density. The dotted line is a

positional or orientational ordering of the system. Some ObDb hard-disk equation of state with both pressure and density scaled

Erllg]se are the usual order parameters for studying 2D melting, 5 constant factor so as to optimally match the pentagon results.
We define the local values of the order parameters at lo-

) ) . A ' N
cation x;, which is the location of pentagop The _global Sq=G)= 12 ey 5)
orderA for the local order parametexx;) is then defined as q Ni=; '
1 EN: To get an indication of the coupling between the neighbor
A= N = a(x) 1) position and particle orientation, the following bond-particle

orientational parameter was used:

(we use absolute values because most order parameters have N
imaginary components 1 N e
First, the particle orientational order parameigfx;) is Vi = N gl Ym(%) X))
defined as
» 18] 19,
énl(x;) = €M%, 2 == |12 o2 eMikre™|, (6)
N iz | Njkea

where ¢, is the angle between an arbitrary axis from the
center to one of the vertices of pentagoand an arbitrary Where, again, the inner sum is over the neighbocd j.
fixed axis. As a convenient measure of absolute orientation,
which removes the fivefold degeneracy inherent in this defi-

nition of the orientation, we can ugg=6, mod27/5). ) . )
For bond-orientational order we use In Fig. 1 the pressuré is plotted versus the packing
fraction 5. For 2D particlesy is defined as the fraction of the

13 i total area covered and provides a convenient particle-shape-
Ynlx;) = N > e, (3 independent dimensionless measure of the density. There are
Ikt two discontinuities in packing fraction which could indicate

whereN; is the number of neighbors of partigiethe sum is f@rst—order phase transiti_ons. The h_igh-density phase transi-
over the neighbor of j, and g is the angle between an tion shows a clear density gap, while the nature of the low-
arbitrary fixed axis and the line connecting partigeendk.  density transition is not as clear. There the situation is similar
Two particles are neighbors if they share an edge in théo 2D hard-disk melting, where, due to the finite-size effects

Voronoi tesselation of the set of points that are the centers ¢¥n the simulation, it is difficult to decide between a first-
the pentagons. order phase transition and a Kosterlitz-Thouless-Hulperin-

In a crystal, thglcompleX sum Nelson-Young(KTHNY) dislocation-unbinding melting sce-
N nario involving a hexatic phadsee, for exampld,12]). The
iw_ 1 similarity between the present case and the hard-disk fluid-
e :Ng ¥nlX)) 4 solid phase transition can be seen in the inset of Fig. 1,
1= where the scaled hard-disk equation of st@etted ling is
for the appropriate value of determines an overall orienta- superimposed on the pentagon equation of Stéd line).
tion w of the crystal. This orientation can then be used with The density dependence of the order parameters at the
the lattice spacing—inferred from the density—to construct dow-density transition is shown in Fig. 2. The sixfold bond
reciprocal lattice vectoG of the appropriate crystal which order¥g and the structure factor of the corresponding lattice
then allows the calculation of the positional order: S(Ohey), Whereqyey is the reciprocal lattice vector of the tri-

B. Phase behavior
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Together with the absolute orientational order, the cou-
pling between orientational and bond-orientational order, in
this casefb*lo\IfG goes from zero to a finite value at the tran-
sition. The structure that forms is a striped phase of antipar-
allelly packed pentagons, as the snapshot in Fig. 4 shows.

To our knowledge, there exists no proof that the regular
arrangement of Fig. 4shown schematically in Fig.)5s the
densest possible pentagon packing on a plane, but it has been
conjectured by Henlej13]. Our simulations and the experi-
ments by Duparcmeuet al. [14] spontaneously form this
arrangement at the highest pressures. The arrangement itself,
as shown in Fig. 5, is crystallographically speaking a rectan-
gular phase with a unit cell of size

5+45
8

N ~ 0.90%)%
FIG. 2. Order parameters at the low-density phase transition for &= B

hard pentagons: The sixfold bond ordEg and the structure factor

of the corresponding triangular latti&qye,) increase. 9 —

- . . . cP— = (5+5) ~ hex
angular lattice, increase. The particle positions are frozen & =0 V 32(5 V5) ~ 0.824,7, ()
onto a triangular lattice. The orientational paramet®s e e . _
however, remain close to zero; there is no orientational orwhere a;** and aye are the equivalent hexagonal unit-cell

dering at this transition. Also the cross coupling between thelimensions. The two particles are located at
sixfold-symmetric crystal field and the fivefold-orientational

symmetry of the particles, as measured by the order param- ro=(0,0),

eter®,,, remains negligiblésee Fig. 3. Of course, there are

definite position-orientation correlations in this rotator phase, 1 3 = ﬁ)

which have been studied in detail in RES] for the pentam- ri=\ol 6t 1—6\“‘5 ; , (8)

ers, but these do not build up to any appreciable net orienta-

tional order. with a maximum packing fraction of 0.921 31. For reasons
At the high-density transitioisee Fig. 3 the bond order that will become clear in the following we prefer, however,

Vg increases further, but the corresponding structure factato look upon this phase as a distorted hexagonal packing.

S(aney drops to zero. The system still has sixfold bond order, Figure 3 also shows the density dependence of the appro-

but the particles are no longer positioned in a regular trianpriate structure facto8(q,) for this type of distorted hex-

gular lattice. At the same transition orientational orderingagonal lattice. The figure clearly shows that this order param-

sets in. In particular®,q grows strongly. Howeverbs re-  eter starts to grow at the phase transition. In addition we also

mains effectively equal to zero. The reason why we observéollowed the behavior of the “aspect-ratio order parameter,”

only 10-fold (in general, 16-fold) ordering is that the par- defined as

ticles align in “antiparallel” fashion, cancelinds exactly. o hex  _cp

Keeping trend with the increased crystallinity, as signaled by w=1- (‘;‘x _ §L> (i _ EL) 9)

the increasing solid structure factsfq,,), the order param- c hex 4cp)°

- ! a &’ a” &
eter ®55 now also develops finite values. )
where a, and a, are the measured lengths of the unit-cell

edges corresponding &f” andaj in Fig. 5. This order pa-
rameter goes from O to 1 as the lattice distorts from hexago-
nal to close-packed structure, as can be seen in Fig. 3.

Upon compression from the rotator phase, the system
forms a close-packed crystal with a large concentration of
defects in the form of kinks in the stripes of the parallelly
aligned pentagons, similar to what the pentagon packings of
Duparcmeuret al. [14] showed. In addition, hysteresis pre-
vents crystallization until pressures are well beyond those at
which the crystal meltgin contrast to Ref[4], where the
system crystallized easily because of finite-size effects

The size of the density gap, the hysteresis, and the jumps
in the order parameter valudgspecially the one in)
strongly suggest a first-order phase transition between the
rotator phase and the close-packed crystalline phase. Given

FIG. 3. Order parameters at tileigher-density rotator-crystal ~ the large number of particles involved it is unlikely that it is
phase transition for hard pentagons. For definitions see the text. a finite-size effect.
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FIG. 4. Representative snapshots of the three phases. Fluid (lefiserotator crystal(middle), and high-density crystdkight). The
pentagons are shaded according to their absolute orientation.

C. Comparison to the elastic antiferromagnet to the strain of the latticéby introducing compressibilify
on a triangular lattice removes the frustration and allows for a transition to an or-
dered ground statf8]. This new phase, the “stripe” phase,

Ising antiferromagnetdsing models with a positive spin- has two broken symmetries: the Ising symmetry and the
spin coupling constand) are often used as models of the three-state symmetry of the underlying lattice.
order-disorder transition in alloys. “Ordering” an alloy The transition to this stripe phase has been found to be
means that unlike particles prefer to be neighbors just likestrongly first order under the assumption of a mean strain
antiparallel spins in an antiferromagnet. But many metallicfield [8]. When fluctuations in the spin positions are taken
solid solutions form a fcc lattice, and antiferromagnetisminto account, the transition is still strongly first order for low
does not “fit” the fcc lattice in the sense that the lattice canvalues of the spin-displacement coupling constant relative to
not be filled up with alternating rows of up and down spinsthe elastic constants, but becomes weakly first order for
in all directions. This mismatch leads to “frustration”’—i.e., a higher values of the spin-displacement coupling constant
disordered lowest-energy state. [16].

The two-dimensional analog of this type of system, the The high-density phase transition in the pentagon system
antiferromagnet on a triangular lattice, has been studied exesembles this transition. Frustration due to the mismatch in
tensively[8,15]. In this model, spins are free to move around particle and lattice geometry is removed by straining the lat-
their lattice position and the neighboring spin-spin interac-ice into the nonhexagonal, striped phase shown in Figs. 4
tion parameter(i,j) is a function of the distance between and 5. Here, the symmetries that are broken are the left-right
the spins andj. In addition, there is a linear elastic term in Symmetry(the direction where a pentagon corner is pointing
the Hamiltonian with the strain depending on the spin posiin & bond directionand a threefold symmetry involving the
tions, introducing the additional requirement of a slowly choice of direction of the stripes. The size of the density gap
varying displacement field. It has been shown that couplingind the behavior of the order parameterand ®,,¥¢ sug-

gest a moderately weak first-order transition similar to what
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FIG. 5. Close packing: pentagons pack onto a distorted triangu-
lar lattice. The unit cell is shown as the rectangular area with darker FIG. 6. Pressur® versus packing fractios for heptagons: The
shades; its dimensions and particle positions are given by (Egs. equation of state shows a discontinuity at a larger packing fraction
and(8), respectively. than for the pentagon case.
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FIG. 8. Order parameters at the high-density transition in
heptagons.
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FIG. 7. Snapshot of the high-density phase of hard heptagongons are a simple model of particles, whose geometry inter-
(P_: 180?. The particles are color coded according their absoluteares with the symmetries allowed for crystals.
orientations. At low pressures pentagons exhibit a positionally and ori-
entationally disordered isotropic phase. On increase of pres-
is seen by Guet al.[16] for the intermediate regime of the sure they undergo a first-order phase transition to a position-
spin-displacement coupling constant strength. ally ordered, but orientationally disordered rotator phase.
This transition proceeds like the freezing transition in hard
disks. We do not find traces of fivefold symmetry in the
Gu et al. have predicted that the transition to the stripedorientational order parameters, contrary to the observations
phase becomes sharper with increasing effective couplingf Ref.[4] for cyclic pentamers, where it is reported that the
u=€?lE, wheree is the coupling between the spins and dis-molecular rotation is hindered in the hexagonal phase.
placements and is the elastic constant of the triangular ~ On further increase of pressure the nonspherical shape of
lattice. In hard-particle systems one is not able to indepenthe particles begins to influence the phase behavior. They
dently vary the direct orientational coupling between the parundergo a first-order phase transition, in which the orienta-
ticles and coupling to the lattice. The only parameter we caitional degrees of freedom are to a large extent “frozen in”
vary is the shape of the particles. In order to assess the effeand the lattice becomes distorted. Both effects thus have their
of such a change on the phase behavior we have therefogfset at the same transition.
also simulated hard heptagons. As pentagons cannot be packed densely onto a regular
Figure 6 shows the equation of state of hard heptagongdtiangular lattice, but can onto a distorted one, the positional
The high-density transition has shifted to a higher packingorder changes at this phase transition. The resulting distor-
fraction (from 7=0.84 for pentagons t@=0.87. A snap- tion of the lattice alleviates frustration of the orientational
shot, Fig. 7, of the high-density phase reveals that is again @and positional order. This effect is well known in the context
striped phase, with a lattice structure similar to that of theof the antiferromagnetic Ising model. The transition to the
pentagons. high-density phase in hard pentagons resembles the transi-
The equation of statésee inset of Fig. 6and the order tion to the striped phase in the antiferromagnetic case.
parametergsee Fig. 8, however, both clearly show that the A short study of hard heptagons reveals that the mismatch
transition has become weaker. Comparing to the parameter between particle shape and crystal structure symmetry is, as
we see that this is naively consistent with the fact (ilethe ~ one expects, less severe than in the pentagon case, resulting
effective orientational coupling between the heptagons is les® a shift of the transition to the striped phase to higher
than that of the less circular pentagons diijl the Young densities and a weakening of its first-order character.
modulus of the lattice is larger due to the higher packing
fraction achieved. However, a more detailed theory that
maps the two models onto each other would be necessary to ACKNOWLEDGMENTS
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D. Changing the couplings: Heptagons
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